

A CINNAMIC ACID DERIVATIVE AND A COUMARIN FROM *MURRAYA EXOTICA*

B. R. BARIK and A. B. KUNDU

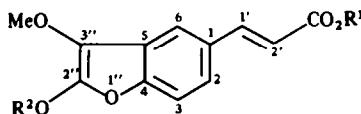
Chemical Research Unit, CCRAS, Department of Chemistry, University College of Science, 92, Acharya Prafulla Chandra Road, Calcutta-700009, India

(Revised received 22 May 1987)

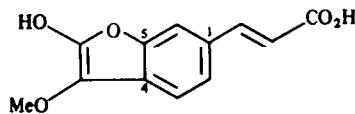
Key Word Index—*Murraya exotica*; Rutaceae; 4,5-[2"-hydroxy-3"-methoxy]furo-*trans*-cinnamic acid; murraxonin; 7-methoxy-8-[1'-ethoxy-2'-hydroxy-3'-methyl-but-3'-enyl]coumarin; murraxocin.

Abstract—Murraxonin, a new cinnamic acid derivative and murraxocin, a new coumarin have been isolated from the leaves of *Murraya exotica*. The compounds were characterized by spectroscopic methods and, in the case of murraxonin, by chemical reactions.

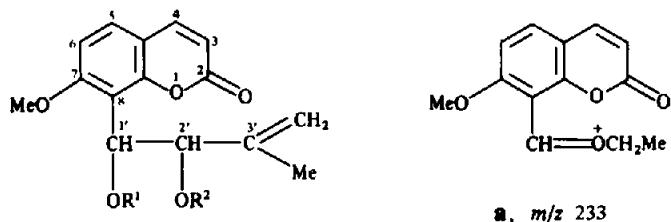
INTRODUCTION


The roots of *Murraya exotica* L. are used as a pain-killer and the leaves/bark of the plant in the treatment of diarrhoea and dysentery [1]. The plant is reported to contain several coumarins [2-8], carbazoles [9, 10] and flavonoids [11, 12]. We now report the isolation of 4,5-(2"-hydroxy-3"-methoxy) furo-*trans*-cinnamic acid (1) and 7-methoxy-8-[1'-ethoxy-2'-hydroxy-3'-methyl-but-3'-enyl]coumarin (3), designated murraxonin and murraxocin, respectively, from the leaves of this plant.

RESULTS AND DISCUSSION


Murraxonin (1), $C_{12}H_{10}O_5$ (M^+ 234), mp 212-215°, $\lambda_{\text{HOH}}^{25}$ 313 (log ϵ : 4.20), 287 (4.25), 217 (4.38) nm; $\lambda_{\text{HOH}+\text{NaOH}}^{25}$ 344 (log ϵ : 3.96), 294 (4.17), 259 (4.38) and 225 (4.29) nm displayed in its IR spectrum (KBr) strong absorption bands at 3400 (hydroxyl), 1700-1670 (br, conjugated acid), 1630, 1615, 1582, 1515 (aromatic nucleus) and 860 (furan) cm^{-1} . On acetylation it gave a monoacetate (1a), $C_{14}H_{12}O_6$, mp 275-280° (d), ν_{max} 3400 (br, -COOH), 1755, 1210 (aromatic acetate), 1690-1675 (conjugated acid) cm^{-1} , δ 2.24 (3H, s). Both compounds 1 and 1a gave a positive test with NaHCO_3 clearly indicating the presence of a carboxylic acid group in their molecules. In agreement with this observation, methylation of 1 with ethereal diazomethane gave a monomethyl derivative (1b), $C_{13}H_{12}O_5$, mp 122-123° (shrinkage at 115°), ν_{max} 1736-1728 (aromatic acid ester) cm^{-1} . That 1

was a 4,5-disubstituted *trans*-cinnamic acid was confirmed by the presence in its 200 MHz ^1H NMR spectrum (in CD_3COCD_3) of doublet pairs of *trans*-olefinic protons at δ 7.63 and 6.38 (1H, d, $J = 16$ Hz, each) for H-1' and H-2'. A doublet ($J = 2$ Hz) at δ 7.24 for one aromatic proton at C-6 was due to *meta*-coupling with the proton at C-2 which appeared at δ 7.18 (1H, dd, $J = 9$ Hz, $J' = 2$ Hz). H-2 was also *ortho*-coupled with H-3 (δ 7.05, 1H, d, $J = 9$ Hz). The above splitting pattern of the benzenoid protons clearly established that the aromatic nucleus was substituted at positions 1, 4 and 5. The ^1H NMR spectrum of 1 also revealed the presence of an aromatic methoxyl at δ 3.92 (3H, s) and a phenolic hydroxyl at δ 3.96 (1H, sharp s, lost on D_2O -exchange). The methoxyl group and phenolic hydroxyl were placed at C-3" and C-2" of the furan ring which is fused to positions 4 and 5 of the aromatic nucleus. The assignment of the hydroxyl at C-2" could explain the alkali-induced bathochromic shifts of 1. All the above spectral data and chemical reactions are best accounted for in terms of the structure 1 for murraxonin. This was further substantiated from the ^1H NMR spectral data (see Experimental) of 1a and from the cracking pattern of 1. The structure 1, rather than 2, is also preferred on biogenetic grounds.


The second compound, murraxocin (3), was isolated as its acetate (3a) along with auraptenol acetate. Murraxocin acetate (3a), $C_{19}H_{22}O_6$, mp 138-140° (ether), showed in its IR spectrum bands at 1740, 1240 (acetate), 1730 (coumarinic carbonyl) and 1605, 1560, 1498 (aromatic nucleus) cm^{-1} . Its ^1H NMR spectrum was highly in-

1 $R^1 = R^2 = H$
1a $R^1 = H$, $R^2 = \text{COMe}$
1b $R^1 = \text{Me}$, $R^2 = H$

2

3 $R^1 = CH_2Me, R^2 = H$
 3a $R^1 = CH_2Me, R^2 = COMe$
 3b $R^1 = R^2 = COMe$

formative and revealed all the structural features of the molecule. The 1H NMR spectral data of 3a (see Experimental) were very similar to those reported [7] for murrangatin diacetate (3b) isolated from the same source except that H-1' [-C(1') H(OC₂H₅)C (2') H(OAC); δ 6.06, H-2'] in the former appeared as a doublet ($J = 8$ Hz) at δ 5.36 whereas the same proton [-C(1')H(OAC)-C(2')H(OAC); δ 6.06, H-2'] appeared at δ 6.66 ($J = 9$ Hz) in 3b for obvious reasons. The location of the ethoxy group at C-1' in 3a and hence in 3, was further confirmed from the presence in the mass spectrum of 3a of an ion fragment corresponding to species, a. Based on the structure of murraxocin acetate (3a), the structure of the parent compound, murraxocin, has been formulated as 3.

It is pertinent to mention here that the methyl ether corresponding to murraxocin was first described as a reaction product of phebalosin with methanol [13] and then isolated, as a probable artefact formed from phebalosin, from *Phebalium dentatum* [14]. It, therefore, seems probable that murraxocin is also an artefact since ethanol was used in the isolation procedure and phebalosin is a known leaf constituent of *M. exotica* [6].

EXPERIMENTAL

The plant material, procured locally, was identified by Dr S. R. Das, Survey Officer, Regional Research Institute (A.Y.), Calcutta 700009. A voucher specimen of the plant material has been deposited at the Department of Chemistry, Calcutta University. Mps: uncorr; 1H NMR (200 and 100 MHz); TMS as int. standard; MS: 70 eV; CC and TLC: silica gel (BDH, 60–120 mesh) and silica gel G (Merck) respectively. The analytical samples were dried *in vacuo* over P₂O₅ for 24 hr.

Isolation of murraxonin (1). Air-dried, powdered leaves of *M. exotica* (8 kg) were successively extracted with petrol and CHCl₃ in a Soxhlet apparatus. The marc, obtained after extraction, was further percolated with EtOH at room temp. After removal of the solvent, the crude alcoholic extract was successively fractionated with petrol, Et₂O and CH₂Cl₂. The concd extract, on repeated CC over silica gel, afforded a crude material (fraction 59–80) when the column was eluted with C₆H₆–EtOAc (19:1 and 9:1). Rechromatography of this material over silica gel with C₆H₆–EtOAc (3:1) gave murraxonin (1) which was crystallized from C₆H₆–Me₂CO (9:1) as light yellow crystals, yield: 0.00013%; C₁₂H₁₀O₃ (M⁺ 234); mp 212–215°; m/z 234 [M]⁺, 220, 219, 205, 150, 149 (100%), 121.

Acetylation of murraxonin. A mixture of murraxonin (1, 5 mg), C₆H₅N (0.2 ml) and Ac₂O (0.5 ml) was heated on water bath for 40 min. Usual work-up afforded crystals of murraxonin acetate (1a, yield: 4 mg) (Found: C 60.95, H, 4.24; C₁₄H₁₂O₆ requires: C, 60.86, H, 4.34); 1H NMR (100 MHz, CDCl₃): δ 2.24 (3H, s,

–OCOMe), 3.80 (3H, s, –OMe), 6.24 (1H, d, $J = 16$ Hz, H-2'), 6.92 (1H, d, $J = 8$ Hz, H-3), 7.20 (1H, d, $J' = 2$ Hz, H-6), 7.36 (1H, dd, $J = 8$ Hz, $J' = 2$ Hz, H-2), 7.64 (1H, d, $J = 16$ Hz, H-1').

Methylation of murraxonin. Murraxonin (1, 4 mg) in Et₂O was treated with ethereal CH₂N₂ at room temp. and the mixture was allowed to stand overnight. After evapn of the solvent, the crude residue was crystallized from Et₂O to afford murraxonin methyl ester (1b), mp 122–123° (shrinkage at 115°) (Found: C, 63.02, H, 4.71; C₁₃H₁₂O₃ requires C, 62.90, H, 4.83).

Isolation of murraxocin acetate. The mother liquor from the recrystallization of murraxonin (1) was acetylated with Ac₂O–C₅H₅N in the usual way and the crude acetate mixture was chromatographed over silica gel. Elution of the column with C₆H₆ gave auraptenol acetate (identified by comparison with an authentic sample [7]). Further elution with the same solvent yielded a solid which crystallized from Et₂O to afford murraxocin acetate (3a, yield: 0.00012%) (Found: C, 65.98, H, 6.22; C₁₉H₂₂O₆ requires C, 65.89, H, 6.35); mp 138–140°; 1H NMR (100 MHz, CDCl₃): δ 1.16 (3H, t, $J = 6$ Hz, –OCH₂Me), 1.52 (3H, s, –Me), 2.08 (3H, s, –OCOMe), 3.48 (2H, m, –OCH₂Me), 3.92 (3H, s, –OMe), 4.72 (2H, m, =CH₂), 5.36 (1H, d, $J = 8$ Hz, H-1'), 6.06 (1H, d, $J = 8$ Hz, H-2'), 6.24 (1H, d, $J = 8$ Hz, H-3), 6.84 (1H, d, $J = 8$ Hz, H-6), 7.38 (1H, d, $J = 8$ Hz, H-5), 7.58 (1H, d, $J = 8$ Hz, H-4).

Acknowledgement—We express our sincere thanks to Professor (Mrs) Asima Chatterjee, Department of Chemistry, Calcutta University, for her interest in the work, Dr B. Ranu, Department of Chemistry, IACS, Jadavpur, for 1H NMR spectral measurement and to Shri S. K. Chatterjee, C.R.U., Calcutta for secretarial assistance.

REFERENCES

1. Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) *Glossary of Indian Medicinal Plants* p. 171.
2. Chakraborty, D. P. and Chowdhury, B. K. (1967) *Tetrahedron Letters* 3472.
3. Ramstrasd, E., Lin, W. C., Lin, T. and Koo, W. Y. (1968) *Tetrahedron Letters* 811.
4. Gupta, G. L. and Nigam, S. S. (1970) *Planta Med.* **19**, 83.
5. Lakshmi, M. V., Rairam, C. V. and Subba Rao, N. V. (1972) *Indian J. Chem.* **10**, 564.
6. Sanyal, P. K. and Bose, P. K. (1969) *Sci. Cult.* **35**, 332.
7. Barik, B. R., Dey, A. K., Das, P. C., Chatterjee, A. and Shoolery, J. N. (1983) *Phytochemistry* **22**, 792.
8. Barik, B. R., Dey, A. K. and Chatterjee, A. (1983) *Phytochemistry* **22**, 2273.
9. Bhattacharya, P., Roy, S., Biswas, A., Bhattacharya, L. and Chakraborty, D. P. (1978) *J. Indian Chem. Soc.* **55**, 308.

10. Roy, S. and Bhattacharya, L. (1981) *J. Indian Chem. Soc.* **58**, 1212.
11. Joshi, B. B. and Kamat, N. V. (1969) *Indian J. Chem.* **7**, 636.
12. Chowdhury, B. K. and Chakraborty, D. P. (1971) *J. Indian Chem. Soc.* **48**, 80.
13. Chow, P. W., Duffield, A. M. and Jefferies, P. R. (1966) *Aust. J. Chem.* **19**, 483.
14. Pinhey, J. T. and Southwell, I. A. (1973) *Aust. J. Chem.* **26**, 409.